

 $u^{\scriptscriptstyle b}$

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

CLINICAL IMMUNOLOGY 4540-FS2019-0

Immunity to Microbes Principles of Vaccination

Christoph Hauser, MD Universitätsklinik für Infektiologie Inselspital

Aims – immunity to microbes

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

- > Understand the responses of the innate, adaptive, humoral and cellular immune system to the major classes of microbes
 - Extracellular bacteria
 - Intracellular bacteria
 - Fungi
 - Viruses
 - Parasites
- > Mechanisms of immune evasion by microbes
- Understand key concepts of immunological pathogenicity mediated by microbes

 \boldsymbol{u}^{b}

Figures from 6th/8th Ed.

Innate and adaptive immunity

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

	Innate	Adaptive
Characteristics		
Specificity	For structures shared by groups of related microbes	For antigens of microbes and for nonmicrobial antigens
Diversity	Limited; germline-encoded	Very large; receptors are produced by somatic recombination of gene segments
Memory	None	Yes
Nonreactivity to self	Yes	Yes
Components		The state of the state of the
Cellular and chemical barriers	Skin, mucosal epithelia; antimicrobial chemicals	Lymphocytes in epithelia; antibodies secreted at epithelial surfaces
Blood proteins	Complement, others	Antibodies
Cells	Phagocytes (macrophages, neutrophils), natural killer cells	Lymphocytes

Table 1–2. Features of Innate and Adaptive Immunity

Innate immune response to extracellular bacteria

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

- Complement activation (alternative pathway) through
- Peptidoglycan in the cell wall of Gram-positive bacteria
 Lipopolysaccharide in Gram-negative bacteria by
 by mannose on bacterial surface

Leads to

- > Opsonization and enhanced phagocytosis
- > Lysis of susceptible bacteria by membran attack complex
- > Activation of phagocytes and inflammation

D UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Adaptive immune response to extracellular bacteria

Bacterial superantigen may lead to injurious effects of the immune response

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

WINSELSPITAL UNIVERSITĂTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Immune response to intraacellular bacteria

Microbe	Examples of Human Diseases
Intracellular Bacteria	
Mycobacteria	Tuberculosis, leprosy
Listeria monocytogenes	Listeriosis
Legionella pneumophila	Legionnaires' disease

 $u^{\scriptscriptstyle b}$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

WINSELSPITAL

OPITAL UNIVERSITAIRE DE BERN

RERN

Adaptive immune response to intracellular bacteria: CD4+/CD8+ cooperation

UNIVERSITÄT BERN

> INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

 $u^{\scriptscriptstyle b}$

FIGURE 16-5 Cooperation of CD4⁺ and CD8⁺ T cells in defense

Cell-mediated immunity to Listeria monocytogenes

Cellular and Molecular Immunology, 7th ed., 2014 Elservier

- Example *Mycobacterium* spp >
- With T-cell help (IFN-gamma) macrophages are activated > and have enhanced ability to kill intracellular bacteria
- Cell wall components inhibit fusion of phagocytic > vacuoles with lysosomes
- Some mycobacteria persist >
- Granulomatous reaction: central necrosis, multinucleated > giant cells, walled off by lymphocytes contains «latent» infection in 90% of patients
- Genetic polymorphism or any kind of immunosuppression > can lead to loss of control either shortly or years after infection

UNIVERSITÄTSSPITAL

 $u^{\scriptscriptstyle b}$

Importance of $T_H 1$ and $T_H 2$ response

Mycobacterium	Some patients: T _H 1	⇒ Tuberculoid leprosy
leprae	Some patients: Defective T_H1 or dominant T_H2	⇒ Lepromatous leprosy (high bacterial count)

Leprosy Mycobacterium leprae

Ú

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

T_H1 Tuberculoid leprosy

T_H2 Lepromatous leprosy

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Immune evasion by bacteria (examples)

Mechanism of Immune Evasion	Examples		
Extracellular Bacteria			
Antigenic variation	Neisseria gonorrhoeae, Escherichia coli, Salmonella typhimurium		
Inhibition of complement activation	Many bacteria		
Resistance to phagocytosis	Pneumococcus, Neisseria meningitidis		
Scavenging of reactive oxygen species	Catalase-positive staphylococci		
Intracellular Bacteria			
Inhibition of phagolysosome formation	Mycobacterium tuberculosis, Legionella pneumophila		
Inactivation of reactive oxygen and nitrogen species	Mycobacterium leprae (phenolic glycolipid)		
Disruption of phagosome membrane, escape into cytoplasm	Listeria monocytogenes (hemolysin protein)		

UNIVERSITÄTSSPITAL

 $u^{\scriptscriptstyle b}$

Immune evasion by bacteria (schematic, example *N. gonorrhoeae*)

Decoy membrane Change in blebs surface antigens over time Sialylation of LPS LPS Neisseria gonorrhoeae **Pilin variants** generated by homologous recombination of pilin genes 0 IgA protease Pili with variable V and G regions on exterior

Immunity to fungi: innate response

Romani 2011

REVIEWS IMMUNOLOGY

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

RERN

- Innate response mainly by phagocytes (neutrophils and macrophages)
- Liberation of radical oxygen species, lysozyme, intracellular digestion

Adaptive Immunity to fungi

7*1*,

- > Adaptive response to fungi
 - Intracellular: mainly CD4/CD8 cooperation (similar as for bacteria); Th1 responses; tendency to chronic granulomatous inflammation
 - Antibodies may exert some protection
- Immune evasion (inhibition of cytokine production in phagocytes)

VINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

 $u^{\scriptscriptstyle b}$

Innate and adaptive immune responses against viruses

Innate immune responses against viruses

WINSELSPITAL

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

FIGURE 4-16 Mechanisms of induction of type I interferons by viruses. Viral nucleic acids and proteins are recognized by several cellular receptor families (TLRs, the family of cytosolic RIG-like receptors, or RLRs, which include MDA-5, RIG-I, DAI and others, and cytosolic DNA sensors), which activate transcription factors (the IRF proteins) that stimulate the production of type I interferons IFN- α and IFN- β .

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Viral immune evasion: overview

Mechanism of immune evasion	Examples
Antigenic variation	Influenza, rhinovirus, HIV
Inhibition of antigen processing Blockade of TAP transporter Removal of class I molecules from the ER	Herpes simplex Cytomegalovirus
Production of cytokine receptor homologs	Vaccinia, poxviruses (IL-1, IFN-γ) Cytomegalovirus (chemokine)
Production of immunosuppressive cytokine	Epstein-Barr virus (IL-10)
Infection of immunocompetent cells	HIV

Abbreviations: ER, endoplasmic reticulum; HIV, human immunodeficiency virus; TAP, transporter associated with antigen processing.

Evasion from immune response: Inhibition of antigen processing by viruses

D UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Immune response to protozan parasites

WINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Parasite	Diseases	Principal mechanisms of protective immunity
Protozoa		
Plasmodium species	Malaria	Antibodies and CD8+ CTLs
Leishmania donovani	Leishmaniasis (mucocutaneous, disseminated)	CD4 ⁺ T _H 1 cells activate macrophages to kill phagocytosed parasites
Trypanosoma brucei	African trypanosomiasis	Antibodies
Entamoeba histolytica	Amebiasis	Antibodies, phagocytosis
Metazoa		
Schistosoma species	Schistosomiasis	ADCC mediated by eosinophils, macrophages
Filaria, e.g., Wuchereria bancrofti	Filariasis	Cell-mediated immunity; role of antibodies?

CTLs, cytotoxic T lymphocytes.

granulocyte

Helminths to big for «normal» immune response (phagocytosis, CTL)

But basic protein of eosinophils can destroy helminths and mast cell mediarors lead to expulsion of helminths

Helminth infection induces T_H2 response

T_H2 cell

WINSELSPITAL IINIVERSITÄTSSPITAI RERI HOPITAL UNIVERSITAIRE DE BERN

b U

UNIVERSITÄT

RERN

Release of FCERI soluble mediators Smooth-000000 Increased muscle cell contractility Mast IL-9 cell 'Weep . .. Epithelial cell and sweep' response Basophil Increased permeability RELMB IL-4 and IL-13 IL-21 Macrophage IL-25 production c-KIT*FcgRb

IL-5-triggered eosinophilia

Eosinophil

11-5

T_H2 effector functions

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

FIGURE 13–13 Effector functions

of T_H2 cells. CD4⁺⁺ T cells that differentiate into T_H2 cells secrete IL-4 and IL-5. IL-4 acts on B cells to stimulate production of antibodies that bind to mast cells, such as IgE. IL-4 is also an autocrine growth and differentiation cytokine for T_H2 cells. IL-5 activates eosinophils, a response that is important for defense against helminthic infections. Cytokines from T_H2 cells also inhibit macrophage activation and T_H1-mediated reactions. APC, antigen-presenting cell.

Immune evasion by parasites

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Mechanism of Immune Evasion	Examples
Antigenic variation	Trypanosomes, <i>Plasmodium</i>
Acquired resistance to complement, CTLs	Schistosomes
Inhibition of host immune responses	Filaria (secondary to lymphatic obstruction), trypanosomes
Antigen shedding	Entamoeba

CTL, cytotoxic T lymphocyte.

Immunological pathogenicity mediated by microbes

INSELSPITAL

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

- > Direct killing of host cells infected
- > Killing or functional impairment of host cells by toxins
 - Endotoxins: liberated by lysis of the microbe, component of cell envelope or cytoplasm
 - Exotoxins: secreted
- > By stimulating immune responses damaging infected and uninfected (innocent bystander) host cells
- Immunological sequelae: molecular mimicry, immune complexes...

Microbe	Examples of Human Diseases	Mechanisms of Pathogenicity		
Extracellular Bacteria	·	•		
Staphylococcus aureus	Skin and soft-tissue infections, lung abscess Systemic: toxic shock syndrome, food poisoning	Skin infections: acute inflammation induced by toxins; cell death caused by pore-forming toxins Systemic: enterotoxin ("superantigen")-induced cytokine production by T cells causing skin necrosis, shock, diarrhea		
Streptococcus pyogenes (group A)	Pharyngitis Skin infections: impetigo, erysipelas; cellulitis Systemic: scarlet fever	Acute inflammation induced by various toxins (e.g., streptolysin O damages cell membranes)		
Streptococcus pyogenes (pneumococcus)	Pneumonia, meningitis	Acute inflammation induced by cell wall constituents; pneumolysin is similar to streptolysin O		
Escherichia coli	Urinary tract infections, gastroenteritis, septic shock	Toxins act on intestinal epithelium chloride and water secretion; endotoxin (LPS) stimulates cytokine secretion by macrophages		
Vibrio cholerae	Diarrhea (cholera)	Cholera toxin ADP ribosylates G protein subunit, which leads to increased cyclic AMP in intestinal epithelial cells and results in chloride secretion and water loss		
Clostridium tetani	Tetanus	Tetanus toxin binds to the motor end plate at neuromuscular junctions and causes irreversible muscle contraction		
Neisseria meningitidis (meningococcus)	Meningitis	Acute inflammation and systemic disease caused by potent endotoxin		
Corynebacterium diphtheriae	Diphtheria	Diphtheria toxin ADP-ribosylates elongation factor 2 and inhibits protein synthesis		

b UNIVERSITÄT BERN

Intracellular Bacteria				
Mycobacteria	Tuberculosis, leprosy	Macrophage activation resulting in granulomatous inflammation and tissue destruction		
Listeria monocytogenes	Listeriosis	Listeriolysin damages cell membranes		
Legionella pneumophila	Legionnaires' disease	Cytotoxin lyses cells and causes lung injury and inflammation		
Fungi				
Candida albicans	Candidiasis	Acute inflammation; binds complement proteins		
Aspergillus fumigatus	Aspergillosis	Invasion and thrombosis of blood vessels causing ischemic necrosis and cell injury		
Histoplasma capsulatum	Histoplasmosis	Lung infection caused by granulomatous inflammation		

b UNIVERSITÄT BERN

> UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Viruses		
Polio	Poliomyelitis	Inhibits host cell protein synthesis (tropism for motor neurons in the anterior horn of the spinal cord)
Influenza	Influenza pneumonia	Inhibits host cell protein synthesis (tropism for ciliated epithelium)
Rabies	Rabies encephalitis	Inhibits host cell protein synthesis (tropism for peripheral nerves)
Herpes simplex	Various herpes infections (skin, systemic)	Inhibits host cell protein synthesis; functional impairment of immune cells
Hepatitis B	Viral hepatitis	Host CTL response to infected hepatocytes
Epstein-Barr virus	Infectious mononucleosis; B cell proliferation, lymphomas	Acute infection: cell lysis (tropism for B lymphocytes) Latent infection: stimulates B cell proliferation
Human immunodeficiency virus (HIV)	Acquired immunodeficiency syndrome (AIDS)	Multiple: killing of CD4 ⁺ T cells, functional impairment of immune cells (see <u>Chapter 20</u>)

1,

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Introduction

The federal vaccine program

Types of vaccines currently in use, including their advantages and disadvantages

The impact of the route of administration of a vaccine

Important effectors of vaccine response

Importance of adjuvant / examples

Introduction to the term "herd immunity"

"New" vaccines

Introduction to vaccines

1,

UNIVERSITÄT

DEDN

- > Continuous race between host and pathogen
- > For exclusive human pathogens: important co-evolution
- > Different pathogens different strategies
- > Co-existence may be desired or not
- > Vaccine efforts exert evolutionary pressure

Introduction to vaccines

 $u^{\scriptscriptstyle b}$

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

> 1796: First vaccination by Jenner

UNIVERSITÄT

 Active: expose individual with attenuated, killed or split organisms that leads to the development of an immune response without the risk of (severe) disease

VS.

- Passive: adoptive transfer of specific effector mechanisms from other, previously actively immunized individuals

Federal vaccine program

 $u^{\scriptscriptstyle b}$

Tabelle 1Empfohlene Basisimpfungen 2016

Stand 2016

Empfehlungen der Eidgenössischen Kommission für Impffragen und des Bundesamtes für Gesundheit

Alter ¹⁾	Diphtherie (D/d) ³⁾ Tetanus (T) ⁴⁾ Pertussis (P _a /p _a) ³⁾	<i>Haemophilus influenzae</i> Typ b (Hib)	Poliomyelitis (IPV)	Masern (M) Mumps (M) Röteln (R)	Hepatitis B (HBV) ¹⁷⁾	Varizellen (VZV)	Humane Papillo- maviren (HPV)	Influenza
Geburt					18)			
2 Monate ²⁾	DTP _a	Hib	IPV		(HBV) ¹⁹⁾			
4 Monate ²⁾	DTPa	Hib	IPV		(HBV) ¹⁹⁾			
6 Monate	DTPa	Hib	IPV		(HBV) ¹⁹⁾			
12 Monate		10)		MMR 14)				
15–24 Monate	DTPa	Hib ^{10) 11)}	IPV	MMR 14)	(HBV) ¹⁹⁾			
4–7 Jahre	DTP _a ^{5) 6)}		IPV	15)				
11–14 / 15 Jahre	dTpa ^{3) 5) 7) 8)}		12)	15)	HBV ¹⁹⁾	VZV ²¹⁾	HPV ²³⁾	
25–29 Jahre	dTpa ⁹⁾		13)	16)	20)	22)		
45 Jahre	dT ⁹⁾		13)	16)	20)	22)		
≥ 65 Jahre	dT ⁹⁾		13)		20)			24)

Swiss routine vaccine program 2016

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Tabelle 5

Empfohlene ergänzende Impfungen

Stand 2016

Alter ¹⁾	Pneumokokken	Meningokokken der Gruppe C	Humane Papillomaviren
2 Monate	PCV 13 ^{2) 3)}		
4 Monate	PCV 13		
6 Monate	4)		
12 Monate	PCV 13 5)		
12–15 Monate		MCV-C ⁶⁾	
11–14/15 Jahre		MCV-C 7)	HPV bei Jungen ⁸⁾
Junge Frauen (20–26 Jahre) Jungen und junge Männer (15–26 Jahre)			HPV ⁸⁾

Additional vaccines for special indications:

- Travel: Yellow fever, Japanese encephalitis, etc..
- Special exposures: FSME, Rabies, etc ..
- Patients at risk: Influenza

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

	Morbidity/Mortality per year in CH	
Disease	without vaccine	with vaccine
Diphtheria	4'000 cases	Last case 1983
Poliomyelitis	800 cases	Last case 1982
Invasive <i>H. influenzae</i> type b	180 cases	17 (<17 yrs old)
Tetanus	50 cases	16 (none <20 yrs old)
Congenital Rubella	30-50 cases	1? (not complete)
Pertussis	140 deaths	?

Zimmermann HP et al. Rev Med Suisse Romande 1998; www.bag.admin.ch

GOALS OF A VACCINE

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITÄTES DE BERNE

Protect individual:

infection (disease) (clear disease)

By mimicking infection in terms of long lasting immune response without doing harm

"Optional": Give indirect protection (herd immunity) Support global eradication of pathogen

Types of vaccines

 $u^{\scriptscriptstyle b}$

VINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Types of vaccines

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Vaccine	Advantage	Disadvantage	
Passive (antibodies)Rapid protection Minimal side effects		Short duration No memory	
Active			
Whole cell/virus	Variety of antigens	Side effects	
Live, attenuated	Replicates: antigen↑	May cause disease	
Inactivated	Does not replicate	pot. less immunogenic	
Component	Target antigen known Less side effects	Restricted immune response to target antigen	

Passive immunisation

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT

BERN

	Infection or disease	Evidence of effects of passive antibodies
Bacterial toxins	Tetanus	Passive antibodies and maternal immunization are highly effective; can also provide post- exposure prophylaxis in nonimmune individuals
	Diphtheria	Passive antibodies prevent intoxication; effects on infection are unknown
	Pertussis	Maternal antibodies are effective if present in high titer; passive antibodies have been used as therapy, resulting in decreased pathology
Encapsulated bacteria	H. influenzae	In high-risk infants, BPIG given at 2, 6 and 10 months of age provides significant protection from invasive infection during infancy
Viruses	Measles	Passive immunoglobulin can prevent disease and transmission to susceptible contacts
	Rabies	Human rabies immunoglobulin is used in conjunction with vaccine to neutralize virus at site of entry and prevent its spread to CNS
	Smallpox	Passive immunoglobulin prevents spread of smallpox to contacts; treatment of vaccine complications
	Hepatitis A	Vaccine shows 85–90% efficacy in high-risk individuals; also used as post-exposure prophylaxis
	Hepatitis B	HBIG shows 80–90% efficacy in high-risk liver transplant to prevent recurrence of infection
	RSV	Humanized monoclonal antibody (palivizumab) shows 55% efficacy in preventing hospitaliza- tion in high-risk infants
	Varicella zoster	VZIG is efficacious even soon after exposure

Table 1 Protection achieved in humans by passive administration of vaccine-induced antibodies

BPIG, bacterial polysaccharide immunoglobulin; CNS, central nervous system; HBIG, hepatitis B immunoglobulin; RSV, respiratory syncytial virus; VZIG, varicella zoster immunoglobulin.

Route of administration

 u^{\flat}

WINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

 u^{b}

Poliomyelitis vaccines: oral-live vs. parenteral inactivated

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Whole virus Inactivated Parenteral

++	Serum antibody titres	+
	Duration of protection	Î
(+)	Pharyngeal viral excretion	+
(+)	Prevent intestinal infection	+
•	Spread of vaccine virus	+
-	Vaccine disease	+
-	Interference with other enteroviral infection in the intestine	+

Whole virus Live Oral

Immunologic interactions in successful

Vaccines NATURE BIOTECHNOLOGY 2007; 25:303

UINSELSPITAL

HOPITAL UNIVERSITAIRE DE BERN

 $u^{\scriptscriptstyle b}$

Vaccines against bacterial polysaccharides

e.g. Streptococcus, pneumoniae, Haemophilus influenzae, Neisseria meningitidis

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Primary immune response to vaccines

U

VINSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

What have we learned (in retrospect)

- Early protection: antibody-dependent
- Quality (e.g. avidity) → efficacy
- Mucosal vaccines: IgA response
- Duration: B-cell memory

persis. Ab prod. (early response)

- T-cell response: important less well described
- Complicating: antigenic variation strain diversity

influence of age

Lambert PH, Siegrist CA. Nature Medicine. 2005;11:S54.

Boosting, affinity maturation

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Lambert PH, Siegrist CA. Nature Medicine. 2005;11:S54.

Adjuvant

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

RERN

Lambert PH, Siegrist CA. Nature Medicine. 2005;11:S54.

Goal: enhance Ab affinity maturation process

mostly by enhancing innate response

specially important for inactivated and component vaccines

Adjuvant: Aluminium salt

Experimental - CpG oligos - (mod.) *E. coli* heat labile toxin

Importance of early response: depends on infectious agent etc.

UNIVERSITÄT

DEDN

Example: Tetanus-Toxin (TeNT)

Neutralization before uptake into neuron !!

Figure 2 Vaccine-induced anti-tetanus toxin (TeNT) antibodies compete with TeNT receptors at cell surface. Their relative affinities for TeNT (K_1 , K_2) determine the outcome. Once TeNT is internalized, it can no longer be captured by antibodies and the intoxication sequence cannot be stopped.

Lambert PH, Siegrist CA. Nature Medicine. 2005;11:S54.

Example: Hepatitis B virus

Memory \rightarrow long lived protection = anti-HBs Ag titer <u>ever</u> >100 U/L

Incubation period 4-12 wks Time to recruit memory cells

Role of T-cell response??

Passive/active immunisation after exposure?

Need to know natural history of infection Often narrow time window (48-72-96h after first exposure)

Example: Varizella-Zoster virus:

 $u^{\scriptscriptstyle b}$

Can vaccine protection be measured in the individuum?

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

Importance: Surrogate for clinical efficacy studies Document individual protection for high risk situations

Measurement of antibody titres in serum:

- Threshold defined for relatively few vaccines, examples:
 - Hepatitis B Tetanus toxin FSME Rabies etc.
- Cannot extrapolate to wild-type infection (e.g. measles)
- Quantity ≠ quality (e.g. avidity of antibodies, route of administration)

Surrogate: Vaccine record!! (= empiric), e.g. 2 doses MMR vaccine

Antigen variation / strain diversity

Example: influenza virus / vaccine

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

DEDN

Hemagglutinin (H, n=15) Neuraminidase (N, n=9)

RNA, segmented →AG drift / shift "Pandemic vaccine"

H5N1 vaccine: conserved epitope crossreactive?

Reverse genetics for new strains??

Seasonal vaccines

- Four strains
- Yearly up-date (WHO)

Get away from egg embryos?

Antigenic sin

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

RERN

Vaccine efficacy might be modulated by prior vaccination

"Original antigenic sin"

Cross-reactive epitopes preferentially reactivate high-affinity memory B-cells rather than lower affinity naive B-cells.

Individuals exposed 50 yrs earlier to H1N1 Influenza virus strain respond differently to a new H1N1 vaccine strain than adults that had never been exposed to H1N1

Lambert PH, Siegrist CA. Nature Medicine. 2005;11:S54.

Herd immunity

= indirect protection of susceptibles by reduced circulation of pathogen

Vaccine was given to <2 yrs old!!

Conjugated pneumococcal polysaccharide vaccines

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

RERN

- \rightarrow Reduce colonisation
- \rightarrow Reduce transmission

Vaccination at the extremes of age

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

Newborns to 1 year of life

Immature immune system Poor response to T-cell indep. ag

- IgM to IgG2 switch \downarrow
- Complement-mediated reaction \downarrow
- Splenic marginal zone organ \downarrow

Response to T-cell dep. ag \downarrow

- IFN- γ by CD4⁺T_H1 cells \downarrow

Inhibiting maternal antibodies Affects B-cell response - mechanisms?

- Inhibition of live virus vaccines
- FcR mediated inhibition of B-cell activation
- Specific epitope neutralization/ competition with antigen specific B-cell receptors→ ratio maternal ab : vaccine antigen (impact of adolescent immunization?)

Vaccination at the extremes of age

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Elderly: impaired immune response – very late in life Not well investigated

Not all vaccines are equally affected by immune senescence:

- Pneumococcal poylsaccharid vaccine: +++
- Tetanus-Toxoid booster: (+)

Immunology:

- Rapid waning of antibody response
- Relativ restriction of T-cell repertoire

Evidence for the importance of T-cell response for vaccine immunity

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

RERN

Table 2 Evidence for roles of vaccine-induced T-cell effectors against disease

Vaccine	Evidence	
	Major role	
BCG	Negligible antibody response; protection is lost if CD4 T-cell deficiency; <i>in vitro</i> <i>M. tuberculosis</i> 'clearing' from infected cells	
	Some contribution	
Pertussis	Persistence of protective efficacy after antibody decline	
Measles	Reduced disease severity in absence of detectable antibody response	
Influenza	Some protection against cross-reactive A strains in absence of protective levels of antibody	

DNA vaccines

 $\boldsymbol{U}^{\scriptscriptstyle b}$

Vaccine =

- naked DNA on plasmid with strong promoter
- Enters cell nucleus \rightarrow antigen production

Current problems

- Limited immunogenicity
- Various strategies for enhancement proposed

Hung C-F et al. Exp. Mol Med 2007; 39:679

The future: Viral vector vaccines ? -> Example rLCMV

HOPITAL UNIVERSITAIRE DE BERN

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT RERN

Principle:

- commensal / «attenuated» pathogen*
- biological property of interest:
- e.g. compartmentalization to intestinal mucosa)
- genetic engeneering: vaccine antigen(s)

The future: Viral vector vaccines ? -> Example rLCMV

 $u^{\scriptscriptstyle b}$

INSELSPITAL UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE

